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A state of an electron in a quantum wire or a thin film becomes metastable when a static electric field is
applied perpendicular to the wire direction or the film surface. The state decays via tunneling through the
created potential barrier. An additionally applied magnetic field, perpendicular to the electric field, can increase
the tunneling decay rate for many orders of magnitude. This happens when the state in the wire or the film has
a velocity perpendicular to the magnetic field. According to the cyclotron effect, the velocity rotates under the
barrier and becomes more aligned with the direction of tunneling. This mechanism can be called cyclotron
enhancement of tunneling.
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I. INTRODUCTION

Tunneling in a magnetic field is a matter of investigation
for many years. The magnetic field can influence tunneling
across a potential barrier in two different ways.

First, the magnetic field can modify an underbarrier mo-
tion related to a classically forbidden region. Studies of this
phenomenon are presented in the literature. In Refs. 1 and 2
it was pointed out that an underbarrier fall of the wave func-
tion can be less rapid in an inhomogeneous sample. See also
Refs. 3–7. In Ref. 8 a transmission coefficient through a
quadratic barrier was found. A decay of a metastable state
was considered in Ref. 9. The certain peculiarities of an un-
derbarrier wave function were discussed in Refs. 10 and 11.

Second, the magnetic field can influence a state of an
electron at a classically allowed region after an exit from
under the barrier. A typical example is the Wigner resonance
when the electron tunnels into a potential well with a level
aligned to its energy.12 See, for instance, Refs. 13–15. An-
other example relates to a specific density of states in the
classical region after tunneling the barrier. A state of an elec-
tron, influenced by the magnetic field, may fit better that
density of states and this results in increase in tunneling
rate.16

The goal of the paper is to study tunneling decay rate of a
metastable state in a magnetic field �the electron after tun-
neling goes to infinity�. The question to be answered is can a
magnetic field increase the decay rate? It is clear that the
above effect of density of states at the region after the barrier
can, in principle, increase the rate. But this effect, related to
a prefactor, cannot be very large. According to Ref. 16, there
is approximately 50% enhancement of the effect.

It would be much more amazing to increase the main
exponential part of the decay rate by the magnetic field. Ref-
erences 1–9 say that it is impossible. Indeed, when an elec-
tron enters under the barrier its velocity deviates, due to the
cyclotron effect, from a tunneling path with no magnetic
field. This leads to a reduction in the tunneling probability by
the magnetic field. The reduction can be also explained in

terms of increasing of the total barrier. The additional barrier
is proportional to a squared velocity of the electron in the
magnetic field.1,2

But there is a situation when the electron tunnels from a
quantum wire or another object extended in the direction
perpendicular to tunneling. In this case a state prior to tun-
neling can have a finite velocity perpendicular to the tunnel-
ing direction. According to the cyclotron effect, this velocity
rotates under the barrier and becomes more aligned with the
tunneling direction. This leads to enhancement of the tunnel-
ing rate by the magnetic field �cyclotron enhancement�.

Formally, cyclotron enhancement of tunneling results
from a reduction in the main tunneling exponent which re-
minds one of Wentzel, Kramers, and Brillouin �WKB�. The
exponent can be reduced in a few times. Suppose that at zero
magnetic field the tunneling rate is of the order of 10−24 s−1.
The magnetic field can turn it into, say, 10−7 s−1.

We consider in the paper tunneling from a straight quan-
tum wire, directed along the y axis, embedded into a two-
dimensional electron system in the �x ,y� plane. The potential
barrier is created by the electric field E0 directed along the x
axis �the direction of tunneling�. The magnetic field H is
aligned along z. According to electrodynamics, after tunnel-
ing a motion of the electron in perpendicular magnetic and
electric fields is restricted by a finite interval in the x
direction.17 To get the electron passed to infinite x one should
put some potential wall�s� along the x direction restricting
the y motion. Due to multiple reflections from the restricting
wall in the magnetic field, the electron goes to infinite x. We
model the walls by the potential proportional to y4.

The theory presented relates also to tunneling from a flat
�y ,z� film with quantized electron motion in the x direction.
The electron tunnels into a three-dimensional reservoir. Re-
stricting walls should be placed parallel to the �x ,z� plane.

Without the restricting walls a solution can be obtained
analytically on the bases of the modified WKB approach as
shown in Sec. III. An approximation of classical complex
trajectories is formulated in Sec. IV. In Secs. V and VI two
different methods of numerical calculations are applied to the
problem with restricting walls.
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II. FORMULATION OF THE PROBLEM

We consider an electron localized in the �x ,y� plane. The
static magnetic field H is directed along the z axis. Suppose
a motion of the electron in the �x ,y� plane to occur in the
potential U�x ,y�. Then the Schrödinger equation, with the

vector potential A� = �0,Hx ,0�, has the form12

−
�2

2m

�2�

�x2 −
�2

2m
� �

�y
+ ix

m�c

�
�2

� + U�x,y�� = E� , �1�

where �c= �e�H /mc is the cyclotron frequency. The potential

U�x,y� = − ��2u0

m
��x� − E0x + u0

y4

a4 �2�

describes the quantum wire placed in the y direction �the first
term�, the constant electric field E0 �the second term�, and the
restricting walls in the y direction are modeled by the third
term. At E0=0 and H=0 the discrete energy level in the �
well �−u0� is a ground state in the WKB approximation.

A. Dimensionless units

Let us introduce the dimensionless electric field � and the
magnetic field h by the equations

� =
aE0

u0
, h =

�c

E0
�mu0

2
. �3�

Below we measure x and y in the units of u0 /E0 and time in
the units of

�00 =
�2mu0

E0
. �4�

The energy is E=u0� where the dimensionless energy � is
negative in our problem. We also introduce a large semiclas-
sical parameter

B =
u0

�2mu0

�E0
. �5�

At zero magnetic field �h=0� and within the WKB �exponen-
tial� approximation the probability of tunneling12

w�h = 0� = exp�−
4B

3
� �6�

is small. In the new variables Schrödinger equation �1� has
the form

−
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B
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One can exclude the point x=0 if to impose the boundary
condition

� ��

�x
�

x=+0
− � ��

�x
�

x=−0
= − 2B��0,y� . �8�

With the semiclassical accuracy, the lowest level at the �
well is �=−1. At a finite electric field that level is metastable

and we should find a decay rate due to tunneling in the
magnetic field.

B. Semiclassical approach

When the potential barrier is hardly transparent �a large
B� one can use the semiclassical approximation for the wave
function12

��x,y� � expiB��x,y�� , �9�

where ��x ,y� is the classical action satisfying the equation of
Hamilton-Jacobi at x�0

� ��

�x
�2

+ � ��

�y
+ hx�2

− x +
y4

�4 = � . �10�

The function ��x ,y� is continuous. As follows from Eq. �10�,
��� /�x�2 is also continuous. According to that, one can con-
sider the action at positive x with the boundary condition

� ��

�x
�

x=0
= i , �11�

which follows from Eq. �8�. In the approximation of a large
B condition �8� is reduced to

� ���x,y�
�x

�
x=0

= − B��0,y� , �12�

if to consider the problem at positive x only.

III. CYCLOTRON ENHANCEMENT OF TUNNELING

First, we consider tunneling from the quantum wire when
there is no restriction of motion in the y direction. In other
words, we drop down the term y4 in the potential U�x ,y� �2�.
In this case the solution of the Schrödinger equation �1�

��x,y� = exp�− iBky�	�x� �13�

is determined by the effective Schrödinger equation

−
1

B2

d2	

dx2 + V�x�	 = �	 �14�

with the effective potential energy

V�x� = �k − hx�2 − x −
2

B
��x� . �15�

The first term in Eq. �15� is proportional to squared velocity
of the electron. Solutions with positive and negative wave
vector k are possible according to different directions of mo-
tion in the wire. In the WKB approximation for the state
localized in the � well,

k = 
 �1 + � . �16�

In the physical units, the velocity along the quantum wire is

vy = � �1 + ��2u0

m
. �17�

Below we consider a positive k related to the motion from
+� to −� in y. For this case the potential energy V�x� is
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shown schematically in Fig. 1 and the WKB wave function
under the barrier 0xx0 has the form

��x,y� � exp�− iyB�1 + ��

�exp	− B�
0

x

dx1
���1 + � − hx1�2 − x1 − �
 .

�18�

The classical terminal point, determined by the condition
V�x�=�, is

x0 =
1

h
��1 + p2 − p� , �19�

where

p =�� 1

2h
+ �1 + ��2

− 1. �20�

The terminal point x0 plays a role of the exit point from
under the barrier and is marked in Fig. 1. The classically
allowed region V�x�� is between two terminal points dis-
played in Fig. 1. Our consideration has a meaning when the
classically allowed region is of a finite width. This occurs
under the condition

h 
1

2�1 − �1 + ��
�21�

when the two terminal points in Fig. 1 are separated.
For the y-independent potential considered the classically

allowed motion occurs between the two terminal points in
Fig. 1. It means that after an exit from under the barrier the
electron motion will remain restricted in the x direction. A
penetration through the barrier 0xx0 in Fig. 1 can be
enhanced when the level � in the � well coincides with one
of the discrete levels in the well at x�x0. The Wigner reso-
nant tunneling occurs in this case.12

A scenario becomes different if we return to the full po-
tential energy �2�. After coming from under the barrier the
electron participates in cyclotron motion and the Lorentz
drift similar to a classical particle. The Lorentz drift in the

potential �u0y4 /a4−E0x� brings the electron to infinite x. This
happens, according to electrodynamics, as a result of mul-
tiple reflections from the “wall” u0y4 /a4.17 In that case
Wigner tunneling does not occur since there are no discrete
levels to the right of the barrier. This situation corresponds to
a decay of the metastable state in the � well since after tun-
neling the electron goes to infinite x.

Whereas the potential y4 strongly disturbs the motion at
the classical region, the underbarrier motion along the direc-
tion y=0 is hardly violated since reflections from that poten-
tial under the barrier are less important. It is shown in Sec. V.
For this reason, for an underbarrier motion in the full poten-
tial �2� one can use the approach when the potential y4 is
dropped down.

We identify the ratio of the densities

wT =
���x0,0��2

���0,0��2
�22�

with a tunneling rate. In the semiclassical approximation �the
exponential accuracy� wT�w, where w is just the exponen-
tial part following from the WKB form �18�:

w = exp	−
B

h
��1 + p2 − p2 ln

1 + �1 + p2

p
�
 . �23�

For zero magnetic field h=0, the tunneling rate �23� does
not depend on � and coincides with the conventional WKB
expression �6�. For B=15 and �=−1 the tunneling rate in
Fig. 2 drops down with the magnetic field, usually, since the
metastable state in the quantum wire has zero momentum
�16� perpendicular to tunneling. For B=15 and ��−1 such
momentum is finite resulting in cyclotron enhancement of
tunneling. In Fig. 2 we plot the tunneling rate for �
=−0.594. This value is chosen to have a link to numerical
data discussed below.

IV. CLASSICAL TRAJECTORIES

For the potential �2� analytical solutions of the Schrö-
dinger equation �7� and the Hamilton-Jacobi equation �10�
do not exist. Nevertheless, to calculate a tunneling rate with
the exponential accuracy it is not necessary to solve the

x

λ

x0

V(x)

0

H>0

H=0

FIG. 1. The effective potential energy �15� is plotted for a posi-
tive k in Eq. �16�. An electron tunnels between x=0 and x0. The two
dots mark terminal points between which a classical motion occurs.
The potential barrier with no magnetic field is shown by the straight
line.

FIG. 2. �Color online� Decay rate �23� of the metastable state of
the quantum wire versus magnetic field h at B=15. Left curve: the
state in the wire has zero velocity parallel to the wire, �=−1. Right
curve: the same as above when the velocity is finite, �=−0.594.
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Hamilton-Jacobi equation �10� in the full �x ,y� plane. It is
sufficient to track ��x ,y� along a classical trajectory
�x��� ,y����, where �=−it is imaginary time since an under-
barrier classical motion is impossible.

The method of classical trajectories in imaginary time is
well developed for static potential barrier with no magnetic
field.18–21 In this case the main contribution to a tunneling
rate comes from the extreme path linking two classically
allowed regions. The real underbarrier path �x��� ,y���� can
be parametrized as a classical trajectory in imaginary time.

A situation with a magnetic field is substantially different.
For the potential �2� in a magnetic field the coordinate x���
remains real in the underbarrier motion but y���=−i���� be-
comes imaginary. This means that the trajectory does not
track the entire underbarrier path as for zero magnetic field.
It just provides a “bypass” through the plane of complex y.
So the method of classical trajectories for tunneling in a
magnetic field is nontrivial.

One should note that the same situation takes place for
tunneling across nonstationary barriers where imaginary time
stands instead of imaginary y. Validity of the nontrivial tra-
jectory method for the nonstationary barrier was numerically
proved in Ref. 22. The numerical results of the present paper
support the trajectory method also for a static magnetic field.

We consider tunneling from the � well ��=�0� to the clas-
sically allowed region ��=0�. In the ratio of the densities
�22�, defining the tunneling rate, one should put x�0� instead
of x0. With the exponential accuracy, the tunneling rate is

w = exp�− 2B Im��x�0�,0� − ��0,0��� . �24�

The trajectory method allows to calculate the part

A0 = 2B Im��x�0�,0� − �0,− i��i�0��� �25�

of the total action �24� only. This part is expressed through
the classical trajectory

A0 = 2B�
0

�0

d�	1

4
� �x

��
�2

−
1

4
� ��

��
�2

− hx
��

��
− x +

�4

�4 − �
 .

�26�

See, for example, Refs. 10 and 11. The expression in the
square brackets is the Lagrangian in terms of imaginary time.
The coordinates x��� and ���� in Eq. �26� are solutions of the
classical equations of motion

1

2

�2x

��2 = − h
��

��
− 1,

1

2

�2�

��2 = − h
�x

��
−

4�3

�4 �27�

with the conditions

x��0� = 0, � �x

��
�

�0

= − 2, ��0� = 0, � �x

��
�

0
= 0.

�28�

Since the trajectory terminates at the � well, this leads to the
first in condition �28�. The second in condition �28� results
from Eq. �11�. The third in condition �28� corresponds to the
physical exit point y=0. The fourth in condition �28� is a
property of an exit point where the electrons stops to move in
the tunneling direction. Note that the physical velocity per-

pendicular to the tunneling direction at the exit point from
under the barrier is not zero. In the dimensionless units used
it is

�y

�t
= − ���

��
�

�0

. �29�

A solution of Eq. �27� corresponds to the total energy

� = −
1

4
� �x

��
�2

+
1

4
� ��

��
�2

− x +
�4

�4 . �30�

Relation �30� is the fifth condition to Eq. �27� which can be
satisfied by a proper choice of �0.

A. Total action

The trajectory terminates at the unphysical �complex�
point x=0, y=−i���0�. One should connect this point with a
physical one, for example, x=0, y=0. In other words, one
should add to A0 the action

A1 = 2B Im��0,− i��i�0�� − ��0,0�� �31�

to complete the tunneling exponent �24�. One can find the
action �31� by a direct solution of the Hamilton-Jacobi equa-
tion �10�. Since condition �11� holds at all y, it follows from
Eq. �10� that

� ���0,y�
�y

�2

+
y4

�4 = 1 + � . �32�

The integration results in

A1 = 2B��1 + ��3/4f	 ���0�
��1 + ��1/4
sgn����

�� �
�0

� , �33�

where

f�z� = �
0

z

dv�1 − v4. �34�

The sign term in Eq. �33� accounts for a correct sign of
the square root just to match the solution at the point x
=0, y=−i���0�. So the tunneling rate is given by

w = exp�− A0 − A1� , �35�

where the parts of the total action are determined by Eqs.
�26� and �33�.

It is not difficult to check that, if to formally drop down
the part y4 in the potential �2�, the trajectory formalism �35�
gives the same result �23�. For this purpose one has to write
down the explicit expression for the classical trajectory

���� =
sinh�2h��

h sinh�2h�0�
−

�

h
, �36�

which follows from Eq. �27� if to drop down the nonlinear
part in �. The total underbarrier time is determined by the
relation

p sinh�2h�0� = 1. �37�

One should also put f�z�=z in Eq. �33�. At the terminal time
�0, as follows from Eqs. �36� and �37�,
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���0� =
1

h
−

1

2h2 ln
1 + �1 + p2

p
. �38�

V. NUMERICAL CALCULATIONS BY THE X-Y NET

For numerical studies of the problem we consider the
Schrödinger equation �7� at positive x with the boundary
condition �12�. Since numerical calculations with infinite x
are impossible, we modify the potential U�x ,y� �2� by adding
the infinite potential wall at x=R. The wall is accounted for
by the condition ��R ,y�=0. In Fig. 3 the modified potential
UM�x ,0� is shown, where the electron is completely local-
ized resulting in discrete eigenvalues of energy �. In the �
well, due to the potential y4 /�4, there are discrete levels �n.
With no y4 potential the set �n becomes continuous. The
levels associated with the triangular well are ��N�.

For the potential U�x ,y� �2� an electron, initially localized
at the � well, can go to the infinite x providing a decay of this
metastable state during the typical time t0�1 /w, where w is
the tunneling exponent �24�.

For a state initially localized at the � well of the potential
UM�x ,y�, the same type of time t0�1 /w is required to
spread out to the triangular well when �n is not equal to ��N�;
that is, we are away from Wigner resonances. The ratio of
steady wave functions at the triangular well and at the � well
is exponentially small. If to avoid Wigner resonances, it is
determined by the same exponent as the tunneling decay rate
for the case of an infinite R. This justifies the use of UM�x ,y�.

When an energy level, occupied by the electron at the �
well, coincides with one at the triangular well the Wigner
resonant tunneling occurs. In this situation the ratio �22� of
steady wave functions at the triangular well and at the � well
is not exponentially small. Nevertheless, the time to fill out
the initially empty triangular well still remains exponentially
long, t0�1 /�w.

We numerically calculated ��x ,y� for the potential
UM�x ,y� using the discrete two-dimensional net in �x ,y�
space. A step was chosen from a condition of a better con-
vergence. The method used works well for hyperbolic system
and does not result in unphysical exponents. We started with
the asymptotic ��exp�−By3 /3�� at y→� and chosen eigen-
values of � from the condition ���� /�y=0 at y=0. In the
calculations we put B=15, �=1, and R=2. The calculations

are performed at the interval 0x2 with the boundary
condition �12� at x=0. A distance between energy levels in
Fig. 3 can be estimated from the semiclassical approach12 as
��n+1−�n�����N+1�−��N���0.1–0.2. This is confirmed by
the numerical calculations. The results are figured out in Fig.
4.

At zero magnetic field h=0, the variables are separated
and ��x ,0� is a solution of the effective Schrödinger equa-
tion �14� with the potential �15�, where one has to add the
wall at x=2 and formally put k=h=0 and ��−1. The wave
function is shown in Fig. 4 by the dashed curve. Due to
reflections from the wall at x=2 the wave function oscillates
at the interval 1x2. At the classical exit point x0=1 the
wave function, calculated by Eq. �18�, is marked by the dot
on the dashed curve in Fig. 4 where ���x0 ,0��2�2�10−9.

At the finite magnetic field h=1.1, the numerically calcu-
lated wave function is plotted by the solid curve in Fig. 4.
The chosen eigenvalue �=−0.594 is one of the discrete lev-
els �n in Fig. 3. The wave function is extended over the
whole interval 0x2 due to reflections from the potential
y4 and the wall at x=2 in the magnetic field. A classical exit
point �x�0� ,0� and �x�0� ,0� can be calculated on the basis
of the trajectory method of Sec. IV. The results hardly differ
from the case of Sec. III when the potential y4 was dropped
down. According to Eq. �38�, ���0��0.263, which leads to
the very small potential y4�0.005. It is obvious and also can
be shown that an influence of this potential on the classical
trajectory is small. We emphasize that in our case the poten-
tial y4 hardly influences the underbarrier motion only. After
an exit from under the barrier the electron is strongly re-
flected by that potential.

Neglecting the part y4, one can easily perform trajectory
calculations. This results in the exit point �19�, x0=x�0�
�0.594, and the electron density ���x0 ,0��2�2.0�10−5

marked as the dot on the solid curve in Fig. 4. We see that
the analytical and numerical results are close to each other
for both zero and finite magnetic fields.

The three-dimensional plot of ���x ,y��2 is shown in Fig. 5.
Due to reflections from the potential y4 and the wall at x
=2, the motion covers the whole region apart the barrier. We
also performed numerical calculations for the potential y16

instead of y4 just to be closer to a situation of an infinite
restricting wall. Qualitatively, the wave function looks the

U (x,0)
M

0
x

λn λ(N)

R

FIG. 3. Modified potential with the infinite wall at x=R. The
discrete energy levels �n are associated with the � well. The levels
��N� are connected with the triangular well.

FIG. 4. �Color online� Decimal logarithm of the electron density
at B=15 calculated by the method of Sec. V. Dashed curve: zero
magnetic field h=0. Solid curve: finite magnetic field h=1.1 and the
eigenvalue at the wire �n=−0.594. The two dots mark the classical
exit points calculated from Eqs. �18� and �19�.
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same filling out the whole �x ,y� space to the right of the
barrier.

To get tunneling to the triangular well more adequate to
tunneling to an infinite region, we should avoid Wigner reso-
nances, as pointed out above. In Fig. 6 the maximal value of
���x ,0��max

2 after the exit point is plotted versus h. As one can
see, the structure of Wigner resonances is very pronounced.
A shape of the wave functions in the triangular well close to
Wigner peaks was checked. We found no deviation from
eigenfunctions at the triangular well when the � well at x
=0 was absent. This proves the Wigner nature of the peaks in
Fig. 6. We choose h=1.1 to get away from the Wigner reso-
nances as clear from Fig. 6.

VI. NUMERICAL CALCULATIONS BY THE
MATRIX FORMALISM

In Sec. V we performed the numerical calculations at the
interval 0x2 using the boundary condition �12� at x=0.
In this section we demonstrate the numerical formalism,
which does not explore the boundary condition �12�. The

calculations are performed at the interval −2x2, where
the potential UM�x ,y� is symmetrically continued from the
region 0x for negative x. The � function is approximated
by a narrow well of the width of one computational step. The
same method to model a � well was used in Ref. 22. For
positive x in the semiclassical approach �a large B� the re-
sults for the symmetric potential chosen and for the potential
UM�x ,y� should be close to each other. This is confirmed by
the numerical calculations.

In this section we use a matrix formalism. We start up
with the Schrödinger equation

− � 1

B

�

�x
− ihy�2

� −
1

B2

�2�

�y2 + 	 y4

�4 − �x� −
2

B
��x�
� = ��

�39�

with the conditions ��
2,y�=0. Equation �39� differs from
the form �7� by the gauge. The wave function can be written
as the expansion

��x,y� = �
n=0

�

Fn�x�	n�y�B� , �40�

where 	n�z� is a normalized eigenfunction of a harmonic
oscillator

−
�2	n

�z2 + z2	n = �1 + 2n�	n. �41�

One can easily show that the functions Fn�x� satisfy the
equations

−
1

B2

�2Fn

�x2 +
2ih

B3/2 �
m=0

�

�n
m�Fm

�x
+ �

m=0

� �h2 − 1

B
�n

m +
1

B2�4�n
m�Fm

+ 	1 + 2n

B
− �x� −

2

B
��x� − �
Fn = 0, �42�

where the matrices �n
m, �n

m, and �n
m are symmetric and

�n
m = �

−�

�

dz 	m�z�z4	n�z� . �43�

The matrix �n
m ��n

m� is determined by the relation analogous
to Eq. �43� but with the substitution z4→z �z4→z2�. The
nonzero elements are

�n
n−4 =

�n�n − 1��n − 2��n − 3�
4

,

�n
n =

3�2n2 + 2n + 1�
2

, �n
n−2 =

�2n − 1��n�n − 1�
2

,

�n
n−1 =�n

2
, �n

n−2 =
�n�n − 1�

2
, �n

n =
1 + 2n

2
�44�

and also �n
n+4, �n

n+2, �n
n+1, and �n

n+2 obtained as symmetric
combinations from Eq. �44� with the shifts of n.

The above matrix formalism is used to numerically calcu-
late the wave function �40� by a solution of the eigenvalue

FIG. 5. �Color online� Three-dimensional plot of decimal loga-
rithm of the electron density for h=1.1, �=−0.594, and B=15.

FIG. 6. �Color online� Decimal logarithm of the maximal value
of the wave function after an exit from under the barrier versus
magnetic field h. The maxima relate to Wigner resonances, �n

=��N�. A level in the wire from the interval 0.55�n0.6 is ad-
justed to the variable h. The dashed curve is log10 w from Fig. 2
with �=−0.594 for comparison. It corresponds to the electron den-
sity after the barrier when R=� �no Wigner resonances�.
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problem �42�. The calculations were performed by means of
the discretization of the interval −2x2 using 513 points.
To check the scheme we made additional runs for the interval
−3x1 with the equal number of discrete points. Both
methods resulted in the same eigenvalues and eigenfunc-
tions. In all the calculations we considered nine terms in the
expansion �40� of the wave function.

The results are displayed in Fig. 7 showing the states
generic with ones in Fig. 4. The difference in �n for both
figures is 0.008, which is substantially less than ��n+1−�n�
�0.2.

Comparing Figs. 4 and 7, one can conclude that two dif-
ferent numerical methods lead to very similar results. The
numerical data of both methods are also in a good agreement
with the trajectory results shown by the dots in Figs. 4 and 7.

VII. DISCUSSIONS

A common point of view is that due to intrinsic underbar-
rier mechanisms a magnetic field always reduces a probabil-
ity of tunneling decay of a metastable state. In other words, it
never had chances to get tunneling rate enhanced by a mag-
netic field for many orders of magnitude. This point of view
is supported by a general arguments that in the classical elec-
trodynamics a motion ahead is prevented by cyclotron rota-
tion and the same happens in quantum mechanics. The fa-
mous example is Landau states. The increased localization of
a wave function in a magnetic field can also be explained by
an additional potential, proportional to squared velocity, cre-
ated by the magnetic field. Any hand-waving explanation
leads to a conclusion of tunneling reduction. We propose a
mechanism which contrasts to that point of view.

Cyclotron enhancement of tunneling is clear for under-
standing. It occurs due to a rotation under the barrier of a
velocity vector of the electron. Under the cyclotron rotation
it becomes more aligned with the tunneling direction, which
increases the tunneling rate. A necessary condition for the
phenomenon is a finite velocity �17� in the decayed state of
the quantum wire. The velocity should be directed along the

vector E�0�H� , which is parallel to the wire. In the case of the

opposite direction the magnetic field reduces the tunneling
rate. For cyclotron enhancement of tunneling it is important
that a sample, from where tunneling occurs, should be ex-
tended in the direction perpendicular to tunneling. The effect
is absent in tunneling from a small quantum dot.

The scenario of decay of the metastable state in the mag-
netic field consists of two parts. First, the electron moves
under the barrier rotating its velocity. On this step, the role of
reflections from the restricting walls is minor. Second, after
an exit from under the barrier the electron goes to infinity
performing multiple reflections from the restricting walls.

The semiclassical approach used is confirmed by two dif-
ferent numerical methods. A domain of parameters for the
phenomenon can be roughly estimated from the condition
that the Lorentz force, caused by the velocity in the wire, is
of the order of the potential force E0. The parameter h is

h = B
��c

2u0
� 0.58 � 10−4B

H�T�
u0�eV�

. �45�

Since we are interested in h�1 and the semiclassical param-
eter B is large. The Landau splitting ��c is always less than
u0, which defines a scale of the energy levels in the quantum
wire. To be specific, let us consider different regimes of tun-
neling.

A. Strong effect on tunneling (h=2)

We take B=40 and �=−0.3. Then at zero magnetic field
the tunneling rate �23� is 6.9�10−24. At h=2.0 the tunneling
rate �23� becomes 1.1�10−7. The enhancement occurs under
the condition u0�eV��1.16�10−3H�T�. For reasonable val-
ues of the magnetic field, H�10 T, the quantum wire or the
thin film should be “soft” in the sense of a not large u0
�0.01 eV. See Refs. 16 and 23. The exit point from under
the barrier is estimated as x0�250 Å and the electric field is
E0�1.3�103 eV /cm.

B. Weak effect on tunneling (h=0.2)

We take B=15.8 and �=−0.3. Then at zero magnetic field
the tunneling rate �23� is 7.1�10−10. At h=0.2 the tunneling
rate �23� becomes 1.0�10−7. The enhancement occurs under
the condition u0�eV��1.16�10−2H�T�. For reasonable val-
ues of the magnetic field, H�10 T, one can choose u0
�0.1 eV. The exit point from under the barrier is estimated
as x0�75 Å and the electric field is E0�1.0�105 eV /cm.

One can conclude that an experimental observation of cy-
clotron enhancement of tunneling is possible. An experimen-
tal arrangement can be a quantum wire embedded into a
two-dimensional electron system. The electric field is paral-
lel to the two-dimensional system and is perpendicular to the
wire. The magnetic field is perpendicular to the wire and to
the electric field. One can use a dielectric wall parallel to the
tunneling direction just to get electrons moved away after
tunneling along the wall due to multiple reflections from it in
the magnetic field. Another way of an experimental observa-
tion is to use a thin film, with a quantized motion inside,
perpendicular to the electric field.

FIG. 7. �Color online� Decimal logarithm of the electron density
at B=15 calculated by the method of Sec. VI. Dashed curve: zero
magnetic field h=0. Solid curve: finite magnetic field h=1.1 and the
eigenvalue of the wire state �n=−0.586. The two dots mark the
classical exit points ���1,0��2�2�10−9 for h=0 and
���0.586,0��2�2.3�10−5 for h=1.1 calculated from Eqs. �18� and
�19�.
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VIII. CONCLUSIONS

A magnetic field can enhance a tunneling decay rate of a
metastable state for many orders of magnitude. This happens
due to intrinsic underbarrier mechanisms of a cyclotron ro-
tation of an electron velocity. It becomes more aligned with
the tunneling direction resulting in the enhancement of the
tunneling rate. The effect can be observed experimentally for

tunneling from a quantum wire or a thin film across a barrier
created by an applied electric field.
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